Name	Date	

TOWING SERVICE

	Verbal	Description					E	Equa	tion				
	e is \$10 plus	is called, the co \$1 per mile that be towed.		y =		De	efine	your	vari	ables	;:		
the tota	al cost of the dent on the n	near equation to towing service, umber of miles owed.	which is	x =		W	rite y	your	equ	ation	ı:		
Find an		e slope and y-ir ear equation	ntercept of		y =	=							
	Table	of Values						Gra _]	ph				
	X	Y											
											+	-	
											_		
	Points	s to Graph:											
	(`											
	(,)									+	_	
	(,)											
	(,)											

T-SHIRT SHOP

Verbal Description

Your new job is at the Custom T Shop, where T-shirts are printed to order. For each order, Custom T Shop charges \$8.00 per shirt plus a one time set up fee of \$15.00.

Write and graph a linear equation to show how the total cost of the T-shirts depends on how many T-shirts are ordered

Equation

Define your variables:

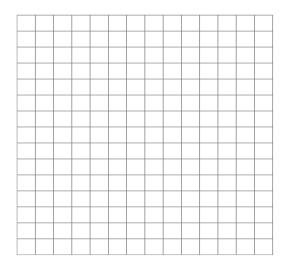
y =

 $\mathbf{x} =$

Write your equation:

y =

Table of Values


X	Y

Points to Graph:

 (\quad , \quad)

(

 $(\quad , \quad]$

PLUMBER

Verbal Description

When a plumber is called, the cost of the service call is \$50 for him to show up at your house, plus an additional \$25 per hour.

Write and graph an equation to represent this relationship where *y* is the total cost of the service call and *x* is the number of hours the plumber is at your home.

Find and interpret the slope and y-intercept of the linear equation

Equation

Define your variables:

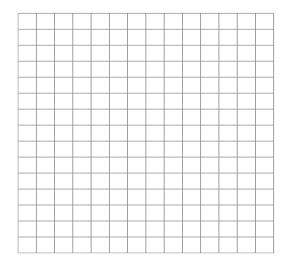
y =

 $\mathbf{x} =$

Write your equation:

y =

Table of Values


X	Y

Points to Graph:

 (\quad , \quad)

 (\quad , \quad)

(, `

CELL PHONE CHARGES

Verbal Description Your cell phone company charges \$20 a month plus \$0.50 per text message. Write and graph an equation that shows how	Equation Define your variables: y =				
your total bill depends on the number of text messages sent.	x = Write your equation: y =				
Table of Values X Y	Graph				
Points to Graph:					
(,)					
(,)					

POPULATION

Verbal Description

Suppose a town has a population of 5,000 residents but that the population is decreasing by 200 people each year.

Write and graph a linear equation to represent the population of the town in terms of the year.

Equation

Define your variables:

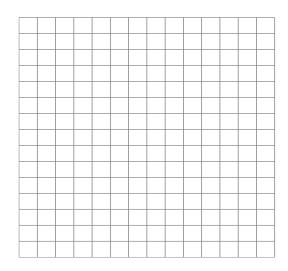
y =

 $\mathbf{x} =$

Write your equation:

y =

Table of Values


X	Y

Points to Graph:

(,)

(,)

 (\quad , \quad)

CARICATURES AT THE FAIR

Verbal Description

At a fair, Bob draws caricatures. He pays the fair \$30 for space to set up a table and \$2 for each drawing he sells.

Write and graph an equation to represent the total amount of money Bob pays the fair in order to sell his caricatures. Let x = the number of caricatures he sells.

Equation

Define your variables:

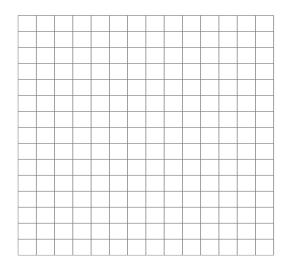
y =

 $\mathbf{x} =$

Write your equation:

y =

Table of Values


X	Y

Points to Graph:

 (\quad , \quad)

 (\quad , \quad)

(, `

WINGS AND SHRIMP

Verbal Description

Suppose you have \$60 to buy shrimp and chicken wings for a party. Shrimp costs \$10/lb and wings cost \$6/lb.

Write and graph a linear equation that could be used to determine the number of pounds of each food that can be purchased with \$60.

Equation

Define your variables:

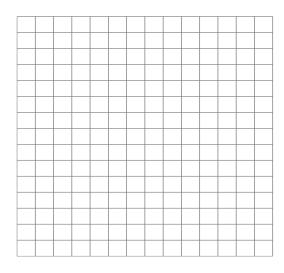
y =

 $\mathbf{x} =$

Write your equation:

y =

Table of Values


X	Y

Points to Graph:

 (\quad , \quad)

 (\quad , \quad)

(,

CARAMEL APPLES

Verbal Description

A vendor has learned that, by pricing caramel apples at \$1.75, sales will reach 105 caramel apples per day. Raising the price to \$2.75 will cause the sales to fall to 53 caramel apples per day.

Let y be the number of caramel apples the vendor sells at x dollars each. Write and graph a linear equation that models the number of caramel apples sold per day when the price is x dollars each

Equation

Define your variables:

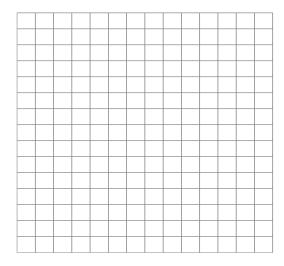
y =

 $\mathbf{x} =$

Write your equation:

y =

Table of Values


X	Y

Points to Graph:

 (\quad ,\quad)

 $(\quad , \quad]$

(

CAR VALUE

Verbal Description

The average value of a certain type of automobile was \$14,220 in 1993 and depreciated to \$9780 in 1997.

Let y be the average value of the automobile in the year x, where x = 0 represents 1993. Write and graph a linear equation that models the value of the automobile in terms of the year x.

Equation

Define your variables:

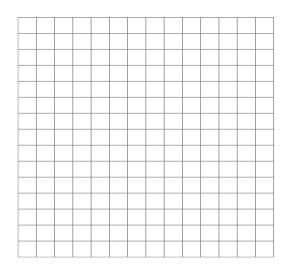
y =

 $\mathbf{x} =$

Write your equation:

y =

Table of Values


X	Y

Points to Graph:

(,)

 (\quad , \quad)

 (\quad , \quad)

RENTAL CAR

Verbal Description

The rental rate at Rent a Wreck is \$30 per day plus \$0.25 per mile driven.

Write and graph a linear equation to represent the total cost to rent a car for *x* number of miles.

Equation

Define your variables:

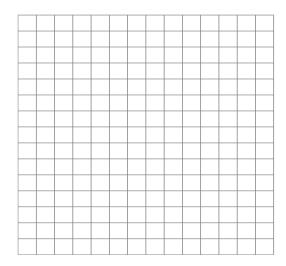
y =

 $\mathbf{x} =$

Write your equation:

y =

Table of Values


X	Y

Points to Graph:

 (\quad , \quad)

 (\quad , \quad)

 (\quad , \quad)

